4 Virtualization

As enterprise data centers continue to rack up servers to slake the insatiable infor-
mation appetite of the modern business, system administrators struggle with a
technical conundrum: how can existing systems be managed more efficiently to
save power, space, and cooling costs while continuing to meet the needs of users?

Software vendors have historically discouraged administrators from running their
applications with other software, citing potential incompatibilities and in some
cases even threatening to discontinue support in cases of noncompliance. The re-
sult has been a flood of single-purpose servers. Recent estimates have pegged the
utilization of an average sever at somewhere between 5% and 15%, and this num-
ber continues to drop as server performance rises.

One answer to this predicament is virtualization: allowing multiple, independent
operating systems to run concurrently on the same physical hardware. Adminis-
trators can treat each virtual machine as a unique server, satisfying picky vendors
(in most cases) while simultaneously reducing data center costs. A wide variety of
hardware platforms support virtualization, and the development of virtualization-
specific CPU instructions and the increasing prevalence of multicore processors
have vastly improved performance. Virtual servers are easy to install and require
less maintenance (per server) than physical machines.

983

984

See page 206 for more
information about
storage area networks.

24.1

Chapter 24 Virtualization

Implementations of virtualization have changed dramatically over the years, but
the core concepts are not new to the industry. Big Blue used virtual machines in
early mainframes while researching time-sharing concepts in the 1960s, allowing
users to share processing and storage resources through an abstraction layer. The
same techniques developed by IBM were used throughout the mainframe heyday
of the 1970s until the client-server boom of the 1980s. The technology lay dor-
mant during the 1980s and 1990s until the cost and manageability problems of
enormous server farms rekindled interest in virtualization for modern systems.
VMware is widely credited with having started the current virtualization craze by
creating a virtualization platform for the Intel x86 architecture in 1999.

Today, virtualization technology is a flourishing business, with many vendors
twisting knobs and pushing buttons to create unique entries into the market. VM-
ware remains a clear leader and offers products targeted at business of all sizes,
along with management software to support highly virtualized organizations. The
open source community has responded with a project known as Xen, which is
supported commercially by a company called XenSource, now owned by Citrix.
With the release of Solaris 10, Sun introduced some powerful technology known
collectively as zones and containers that can run more than 8,000 virtual systems
on a single Solaris deployment. These are just a few of the players in the market.
There are dozens of competing products, each with a slightly different niche.

Although server virtualization is our primary focus in this chapter, the same con-
cepts apply to many other areas of the IT infrastructure, including networks, stor-
age, applications, and even desktops. For example, when storage area networks or
network-attached storage are used, pools of disk space can be provisioned as a
service, creating additional space on demand. Applying virtualization to the desk-
top can be useful for system administrators and users alike, allowing for custom-
tailored application environments for each user.

The many virtualization options have created a struggle for hapless UNIX and
Linux administrators. With dozens of platforms and configurations to choose
from, identifying the right long-term approach can be a daunting prospect. In this
chapter, we start by defining the terms used for virtualization technologies, con-
tinue with a discussion of the benefits of virtualization, proceed with tips for se-
lecting the best solution for your needs, and finally, work through some hands-on
implementation activities for some of the most commonly used virtualization
software on our example operating systems.

VIRTUAL VERNACULAR

The virtualization market has its own set of confusing terms and concepts. Mas-
tering the lingo is the first step toward sorting out the various options.

Operating systems assume they are in control of the system’s hardware, so run-
ning two systems simultaneously causes resource conflicts. Server virtualization is

Full virtualization 985

an abstraction of computing resources that lets operating systems run without
direct knowledge of the underlying physical hardware. The virtualization software
parcels out the physical resources such as storage, memory, and CPU, dynamically
allocating their use among several virtual machines.

UNIX administrators should understand three distinct paradigms: full virtualiza-
tion, paravirtualization, and OS-level virtualization. Each model resolves the re-
source contention and hardware access issues in a slightly different manner, and
each model has distinct benefits and drawbacks.

Full virtualization

Full virtualization is currently the most accepted paradigm in production use to-
day. Under this model, the operating system is unaware that it is running on a
virtualized platform. A “hypervisor,” also known as a virtual machine monitor, is
installed between the virtual machines (“guests”) and the hardware.

Such hypervisors are also known as bare-metal hypervisors since they control the
physical hardware. The hypervisor provides an emulation layer for all of the host’s
hardware devices. The guest operating system is not modified. Guests make direct
requests to the virtualized hardware, and any privileged instructions that guest

kernels attempt to run are intercepted by the hypervisor for appropriate handling.

Bare-metal virtualization is the most secure type of virtualization because guest
operating systems are isolated from the underlying hardware. In addition, no ker-
nel modifications are required, and guests are portable among differing underly-
ing architectures. As long as the virtualization software is present, the guest can
run on any processor architecture. (Translation of CPU instructions does, how-
ever, incur a modest performance penalty.)

VMware ESX is an example of a popular full virtualization technology. The gen-
eral structure of these systems is depicted in Exhibit A.

Exhibit A Full virtualization architecture

Guest 0OS 0
Guest OS 1
Guest OS N

Fully virtualized hypervisor
(e.g., VMWare ESX)

System Hardware

| Disk CPU Memory |—

986

Exhibit B

Chapter 24 Virtualization

Paravirtualization

Paravirtualization is the technology used by Xen, the leading open source virtual

platform. Like full virtualization, paravirtualization allows multiple operating sys-
tems to run in concert on one machine. However, each OS kernel must be modi-

fied to support “hypercalls,” or translations of certain sensitive CPU instructions.

User-space applications do not require modification and run natively on Xen ma-
chines. A hypervisor is used in paravirtualization just as in full virtualization.

The translation layer of a paravirtualized system has less overhead than that of a
fully virtualized system, so paravirtualization does lead to nominal performance
gains. However, the need to modify the guest operating system is a dramatic
downside and is the primary reason why Xen paravirtualization has scant support
outside of Linux and other open source kernels.

Exhibit B shows a paravirtualized environment. It looks similar to the fully virtu-
alized system in Exhibit A, but the guest operating systems interface with the hy-
pervisor through a defined interface, and the first guest is privileged.

Paravirtualization architecture

Privileged _,
guest (host)

i)
@
=
bS]
<}
E

(modified)

=
v
o
-
wv
)
=
(U}

Guest 0S 0

]

Paravirtualized hypervisor
(e.g., Xen, LDoms)

I— System Hardware
Disk CPU Memory

Operating system virtualization

OS-level virtualization systems are very different from the previous two models.
Instead of creating multiple virtual machine environments within a physical sys-
tem, OS-level virtualization lets an operating system create multiple, isolated ap-
plication environments that reference the same kernel. OS-level virtualization is
properly thought of as a feature of the kernel rather than as a separate layer of
software abstraction.

Because no true translation or virtualization layer exists, the overhead of OS-level
virtualization is very low. Most implementations offer near-native performance.
Unfortunately, this type of virtualization precludes the use of multiple operating
systems since a single kernel is shared by all guests (or “containers” as they are

Exhibit C

Cloud computing 987

commonly known in this context).! AIX workload partitions and Solaris contain-
ers and zones are examples of OS-level virtualization.

OS-level virtualization is illustrated in Exhibit C.

0S-level virtualization architecture

Virtual machine 1

Host Kernel i OS Virtualization
(e.g., Solaris containers,
HP Integrity VM,
IBM workload partitions)

Native virtualization

In an attempt to distinguish their hardware offerings, the silicon heavyweights
AMD and Intel are competing head to head to best support virtualization through
hardware-assisted (“native”) virtualization. Both companies offer CPUs that in-
clude virtualization instructions, eliminating the need for the translation layer
used in full and paravirtualization. Today, all major virtualization players can take
advantage of these processors’ features.

Cloud computing

In addition to traditional virtualization, a relatively recent offering in the industry
known informally (and, to some, begrudgingly) as cloud computing is an alterna-
tive to locally run server farms. Cloud computing offers computing power as a

service, typically attractively priced on an hourly basis. The most obvious benefit
is the conversion of server resources into a form of infrastructure analogous to

power or plumbing. Administrators and developers never see the actual hardware
they are using and need have no knowledge of its structure. The name comes from
the traditional use of a cloud outline to denote the Internet in network diagrams.

As a system administration book, this one focuses on cloud computing at the
server level, but applications are also being moved to the cloud (commonly
known as software-as-a-service, or SAAS). Everything from email to business
productivity suites to entire desktop environments can be outsourced and man-
aged independently.

. This is not entirely true. Solaris containers have a feature called “branded zones” that allows Linux

binaries to run on a Solaris kernel.

988

24.2

Chapter 24 Virtualization

Cloud services are commonly bundled with a control interface that adjusts capac-
ity on demand and allows one-click provisioning of new systems. Amazon’s Elas-
tic Compute Cloud (EC2) is the most mature of the first-generation services of
this type. It has been widely adopted by companies that offer next-generation web
platforms. Love it or hate it, utility computing is gaining traction with bean coun-
ters as a cheaper alternative to data centers and localized server infrastructure.
Talking heads in the IT industry believe that cloud technologies in their myriad
forms are the future of computing.

Cloud computing relies on some of the same ideas as virtualization, but it should
be considered a distinct set of technologies in its own right.

Live migration

A final concept to consider is the possibility of migrating virtual machines from
one physical machine to another. Most virtualization software lets you move vir-
tual machines in real time between running systems, in some cases without inter-
ruptions in service or loss of connectivity. This feature is called live migration. It’s
helpful for load balancing, disaster recovery, server maintenance, and general sys-
tem flexibility.

Comparison of virtualization technologies

Although the various virtualization options are conceptually different, each tech-
nique offers similar results in the end. Administrators access virtual systems in
the same way as they access any normal node on the network. The primary differ-
ences are that hardware problems may affect multiple systems at once (since they
share hardware) and that resource contention issues must be debugged at the
same level at which virtualization is implemented (e.g., in the hypervisor).

BENEFITS OF VIRTUALIZATION

Given the many blessings of virtual computing, it’s surprising that it took so many
years to be developed and commercially accepted. Cost savings, reduced energy
use, simplified business continuity, and greater technical agility are some of the
main drivers of the adoption of virtual technologies.

Cost is a major factor in all new IT projects, and with virtualization, businesses
realize immediate short-term cost savings because they purchase fewer servers.
Instead of acquiring new servers for a new production application, administrators
can spin up new virtual machines and save in up-front purchasing costs as well as
ongoing support and maintenance fees. Cooling requirements are cut dramati-
cally since virtual servers do not generate heat, resulting in additional savings.
Data centers also become easier to support and less expensive to maintain. With
some organizations consolidating up to 30 physical servers onto a single virtual
host, a quick glance at the savings in rack space alone is sure to set data center
managers blushing with pride.

24.3

A practical approach 989

A reduced ecological impact is an easy marketing win for businesses as well. Some
estimates suggest that nearly one percent of the world’s electricity is consumed by
power-hungry data centers.> Modern multicore CPUs are used more efficiently
when several virtual machines are running simultaneously.

Business continuity—that is, the ability of a company to survive physical and log-
ical crises with minimal impact on business operations—is a vexing and expen-
sive problem for system administrators. Complex approaches to disaster recovery
are simplified when virtual servers can be migrated from one physical location to
another with a single command. The migration technologies supported by most
virtualization platforms allow applications to be location independent.

Because hypervisors can be accessed independently of the virtual servers they
support, server management ceases to be grounded in physical reality and be-
comes fully scriptable. System administrators can respond quickly to customer
requests for new systems and applications by making use of template-driven
server provisioning. Scripts can automate and simplify common virtual system
administration tasks. A virtual server’s boot, shutdown, and migration chores can
be automated by shell scripts and even scheduled through cron. Discontinued op-
erating systems and applications can be moved off unsupported legacy hardware
onto modern architectures.

Virtualization increases availability. Live migration allows physical servers to be
taken down for maintenance without downtime or interruptions in service. Hard-
ware upgrades do not impact the business, either. When it’s time to replace an
aging machine, the virtual system is immediately portable without a painful up-
grade, installation, test, and cutover cycle.

Virtualization makes the rigorous separation of development, test, staging, and
production environments a realistic prospect, even for smaller businesses. Histor-
ically, maintaining these separate environments has been too expensive for many
businesses to bear, even though regulations and standards may have demanded it.
The individual environments may also benefit; for example, quality assurance tes-
ters can easily restore a test environment to its baseline configuration.

In terms of immediate gratification, few technologies seem to offer as many possi-
bilities as server virtualization. As we’ll see in the next section, however, virtual-
ization is not a panacea.

A PRACTICAL APPROACH

The transition to a virtualized environment must be carefully planned, managed,
and implemented. An uncoordinated approach will lead to a motley assortment of
unstable, unmanageable implementations that do more harm than good. Further-
more, the confidence of stakeholders is easily lost: early missteps can complicate

. Estimated by Jonathan Koomey in his excellent study “Estimating total power consumption by servers

in the U.S. and the world”

990

Chapter 24 Virtualization

future attempts to move reluctant users to new platforms. Slow and steady wins
the race.

It's important to choose the right systems to migrate since some applications are
better suited to virtualization than others. Services that already have high utiliza-
tion might be better left on a physical system, at least at the outset. Other services
that are best left alone include these:

Resource intensive backup servers or log hosts

High-bandwidth applications, such as intrusion detection systems

Busy I/0-bound database servers

Proprietary applications with hardware-based copy protection
Applications with specialized hardware needs, such as medical systems
or certain scientific data gathering applications

Good candidates for virtualization include these:

Internet-facing web servers that query middleware systems or databases
Underused stand-alone application servers

Developer systems, such as build or version control servers

Quality assurance test hosts and staging environments

Core infrastructure systems, such as LDAP directories, DHCP and DNS
servers, time servers, and SSH gateways

Starting with a small number of less critical systems will help establish the organi-
zation’s confidence and develop the expertise of administrators. New applications
are obvious targets since they can be built for virtualization from the ground up.
As the environment stabilizes, you can continue to migrate systems at regular in-
tervals. Large organizations might find that 25 to 50 servers per year is a sustain-
able pace.

Plan for appropriate infrastructure support in the new environment. Storage and
network resources should support the migrations plans. If several systems on the
same physical host will reside on separate physical networks, plan to trunk the
network interfaces. Include appropriate attachments for systems that will use
space on a SAN. Make smart decisions about locating similar systems on the same
physical hardware to simplify the infrastructure. Finally, make sure that every vir-
tual machine has a secondary home to which it can migrate in the event of main-
tenance or hardware problems on the primary system.

Don't run all your mission-critical services on the same physical hardware, and
don’t overload systems with too many virtual machines.

Thanks to rapid improvements in server hardware, administrators have lots of
good options for virtualization. Multicore, multiprocessor architectures are an ob-
vious choice for virtual machines since they reduce the need for context switches
and facilitate the allocation of CPU resources. New blade server products from
major manufacturers are designed for virtual environments and offer high I/O

24.4

Introduction to Xen 991

and memory capacity. Solid state disk drives have inherent synergy with virtual-
ization because of their fast access times and low power consumption.

VIRTUALIZATION WITH LINUX

Two major projects are vying for the title of Linux virtualization champion: Xen
and KVM. In one corner, Xen is an established, well-documented platform with
wide support from the distribution heavyweights. In the other corner, KVM has
been accepted by Linus Torvalds into the mainstream Linux kernel. It enjoys a
growing fan base, and both Ubuntu and Red Hat are supporting it.

In this section we'll stay out of the ring and stay focused on the pertinent system
administration details for each technology.

Introduction to Xen

Initially developed by Ian Pratt as a research project at the University of Cam-
bridge, the Linux-friendly Xen has grown to become a formidable virtualization
platform, challenging even the commercial giants in terms of performance, secu-
rity, and especially cost. As a paravirtual hypervisor, the Xen virtual machine
monitor claims a mere 0.1%-3.5% overhead, far less than fully virtualized solu-
tions. Because the Xen hypervisor is open source, a number of management tools
exist with varying levels of feature support. The Xen source is available from
xen.org, but many distributions already include native support.

Xen is a bare-metal hypervisor that runs directly on the physical hardware. A run-
ning virtual machine is called a domain. There is always at least one domain, re-
ferred to as domain zero (or dom0). Domain zero has full hardware access, man-
ages the other domains, and runs all device drivers. Unprivileged domains are
referred to as domU. All domains, including domoO, are controlled by the Xen hy-
pervisor, which is responsible for CPU scheduling and memory management. A
suite of daemons, tools, and libraries completes the Xen architecture and enables
communication between domU, dom0, and the hypervisor.

Several management tools simplify common Xen administration tasks such as
booting and shutting down, configuring, and creating guests. Xen Tools is a col-
lection of Perl scripts that simplify domU creation. MLN, or Manage Large Net-
works, is another Perl script that creates complex virtual networks out of clean,
easily understood configuration files. ConVirt is a shockingly advanced GUI tool
for managing guests. It includes drag-and-drop live migration, agentless multi-
server support, availability and configuration dashboards, and template-driven
provisioning for new virtual machines. For hardened command-line junkies, the
unapologetic built-in tool xm fits the bill.

Linux distributions vary in their support of Xen. Red Hat originally expended
significant resources on including Xen in its distributions before ditching it for
the competing KVM software. Xen is well supported in SUSE Linux, particularly
in the Enterprise 11 release. Canonical, the company behind Ubuntu Linux, has

992

Table 24.1

See the footnote on
page 308 for more info
about sparse files.

Chapter 24 Virtualization

taken an odd approach with Xen, wavering on support in most releases before
finally dropping it in version 8.10 in favor of KVM (although Xen is still men-
tioned in documentation). Once installed, basic Xen usage differs little among
distributions. In general, we recommend Red Hat or SUSE for a large Xen-based
virtualization deployment.

Xen essentials

A Linux Xen server requires a number of daemons, scripts, configuration files,
and tools. Table 24.1 lists the most interesting puzzle pieces.

Xen components

Path Purpose

/etc/xen Primary configuration directory
xend-config.sxp Top-level xend configuration file
auto Guest OS config files to autostart at boot time
scripts Utility scripts that create network interfaces, etc.

/var/log/xen Xen log files

/usr/sbin/xend Master Xen controller daemon

/usr/sbin/xm Xen guest domain management tool

Each Xen guest domain configuration file in /etc/xen specifies the virtual re-
sources available to a domU, such as disk devices, CPU, memory, and network
interfaces. There is one configuration file per domU. The format is extremely flex-
ible and gives administrators granular control over the constraints that will be
applied to each guest. If a symbolic link to a domU configuration file is added to
the auto subdirectory, that guest OS will be automatically started at boot time.

The xend daemon handles domU creation, migration, and other management
tasks. It must always remain running and typically starts at boot time. Its configu-
ration file, /etc/xen/xend-config.sxp, specifies the communication settings for
the hypervisor and the resource constraints for domo. It also configures facilities
for live migration.

Guest domains’ disks are normally stored in virtual block devices (VBDs) in
dom0. The VBD can be connected to a dedicated resource such as a physical disk
drive or logical volume. Or it can be a loopback file, also known as a file-backed
VBD, created with dd. Performance is better with a dedicated disk or volume, but
files are more flexible and can be managed with normal Linux commands (such as
mv and cp) in domain zero. Backing files are sparse files that grow as needed.
Unless the system is experiencing performance bottlenecks, a file-backed VBD is
usually the better choice. It’s a simple process to transfer a VBD onto a dedicated
disk if you change your mind.

Xen guest installation with virt-install 993

Similarly, virtual network interfaces (aka VIFs) can be set up in multiple ways.
The default is to use bridged mode, in which each guest domain is a node on the
same network as the host. Routed and NAT modes configure guest domains to be
on a private network, accessible to each other and domain 0 but hidden from the
rest of the network. Advanced configurations include bonded network interfaces
and VLANS for guests on different networks. If none of these options fit the bill,
Xen network scripts are customizable to meet almost any unique need.

Xen guest installation with virt-install

One tool for simple guest installation is virt-install, bundled as part of Red Hat’s
virt-manager application.’ virt-install is a command-line OS provisioning tool.
It accepts installation media from a variety of sources, such as an NFS mount, a
physical CD or DVD, or an HT'TP location.

For example, the installation of a guest domain might look like this:

redhat$ sudo virt-install -n chef -f /vm/chef.img -1 http://example.com/myos
-r 512 --nographics

This is a typical Xen guest domain with the name “chef;” a disk VBD location of
/vm/chef.img, and installation media obtained through HTTP. The instance has
512MiB of RAM and uses no X Windows-based graphics support during installa-
tion. virt-install downloads the files needed to start the installation and then
kicks off the installer process.

You'll see the screen clear, and you’ll go through a standard text-based Linux in-
stallation, including network configuration and package selection. After the in-
stallation completes, the guest domain reboots and is ready for use. To disconnect
from the guest console and return to dom0, type <Control-]>.

See page 1138 formore It’s worth noting that although this incantation of virt-install provides a text-
details on VNC. based installation, graphical support through Virtual Network Computing (VNC)
is also available.

The domain’s configuration is stored in /etc/xen/chef. Here’s what it looks like:

name = "chef”

uuid = "a85e20f4-d11b-d4f7-1429-7339b1d0d051"
maxmem = 512

memory = 512

vepus = 1

bootloader = "/usr/bin/pygrub"

on_poweroff = "destroy”

on_reboot = "restart"

on_crash = "restart"

vib =]

disk = ["tap:aio:/vm/chef.dsk,xvda,w" |

vif = ["mac=00:16:3e:1e:57:79,bridge=xenbr0"]

3. Install the python-virtinst package for virt-install support on Ubuntu.

http://example.com/myos

994

Chapter 24 Virtualization

You can see that the NIC defaults to bridged mode. In this case, the VBD is a
“block tap” file that provides better performance than does a standard loopback
file. The writable disk image file is presented to the guest as /dev/xvda. This par-
ticular disk device definition, tap:aio, is recommended by the Xen team for per-
formance reasons.

The xm tool is convenient for day-to-day management of virtual machines, such
as starting and stopping VMs, connecting to their consoles, and investigating cur-
rent state. Below, we show the running guest domains, then connect to the con-
sole for chef. IDs are assigned in increasing order as guest domains are created,
and they are reset when the host reboots.

redhat$ sudo xm list

Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 2502 2 r----- 397.2
chef 19 512 1 -b---- 12.8

redhat$ sudo xm console 19

To effect any customization of a guest domain, such as attaching another disk or
changing the network to NAT mode instead of bridged, you should edit the guest’s
configuration file in /etc/xen and reboot the guest. The xmdomain.cfg man page
contains excellent detail on additional options for guest domains.

Xen live migration

A domain migration is the process of moving a domU from one physical host to
another, and a live migration does so without any loss of service. Practically
speaking, this is one of the handiest and most magical of virtualization tricks for
system administrators. Open network connections are maintained, so any SSH
sessions or active HT'TP connections will not be lost. Hardware maintenance, op-
erating system upgrades, and physical server reboots are all good opportunities to
use migration magic.

One important requirement for implementing migrations is that storage must be
shared. Any storage needed by the domU, such as the disk image files on which
the virtual machine is kept, must be accessible to both host servers. File-backed
virtual machines are simplest for live migration since they’re usually contained in
a single portable file. But a SAN, NAS, NFS share, or iSCSI unit are all acceptable
methods of sharing files among systems. However the VBD is shared, be sure to
run the domU on only one physical server at a time. Linux filesystems do not
support direct, concurrent access by multiple hosts.

Additionally, because the IP and MAC addresses of a virtual machine follow it
from one host to another, each server must be on the same layer 2 and IP subnets.
Network hardware learns the new location of the MAC address once the virtual
machine begins sending traffic over the network.

Once these basic requirements are met, all you need are a few configuration
changes to the hypervisor configuration file, /etc/xen/xend-config.sxp, to enable

Table 24.2

KVM 995

migrations. Table 24.2 describes the pertinent options; they are all commented
out in a default Xen installation. After making changes, restart xend by running
/etc/init.d/xend restart.

Live migration options in the xend configuration file

Option Description

xend-relocation-server Enables migration; set to yes
xend-relocation-port Network port used for migration activities
xend-relocation-address Interface to listen on for migration connections. If

unspecified, Xen listens on all interfaces in domO0.
xend-relocation-hosts-allow Hosts from which to allow connections®

a. This should never be blank; otherwise, connections will be allowed from all hosts.

In the process of migrating a virtual machine between hosts, the domU’s memory
image traverses the network in an unencrypted format. Administrators should
keep security in mind if the guest has sensitive data in memory.

Before attempting a migration, the guest’s configuration file must be in place on
both the source and destination servers. If the location of the disk image files dif-
fers between hosts (e.g., if one server mounts the shared storage in /xen and the
other in /vm), this difference should be reflected in the disk = parameter of the
domain’s configuration file.

The migration itself is simple:
redhat$ sudo xm migrate --live chef server2.example.com

Assuming that our guest domain chef is running, the command migrates it to
another Xen host, server2.example.com. Omitting the --live flag pauses the do-
main prior to migration. We find it entertaining to run a ping against chef’s IP
address during the migration to watch for dropped packets.

KVM

KVM, the Kernel-based Virtual Machine, is a full virtualization tool that has been
included in the mainline Linux kernel since version 2.6.20. It depends on the Intel
VT and AMD-V virtualization extensions found on current CPUs.* It is the de-
fault virtualization technology in Ubuntu, and Red Hat has also changed gears
from Xen to KVM after acquiring KVM’s parent company, Qumranet.

Since KVM virtualization is supported by the CPU hardware, many guest operat-
ing systems are supported, including Windows. The software also depends on a
modified version of the QEMU processor emulator.

. Does your CPU have them? Try egrep '(vmx|svm)' /proc/cpuinfo to find out. If the command dis-

plays no output, the extensions are not present. On some systems, the extensions must be enabled in
the system BIOS before they become visible.

996

Chapter 24 Virtualization

Under KVM, the Linux kernel itself serves as the hypervisor; memory manage-
ment and scheduling are handled through the host’s kernel, and guest machines
are normal Linux processes. Enormous benefits accompany this unique approach
to virtualization. For example, the complexity introduced by multicore processors
is handled by the kernel, and no hypervisor changes are required to support them.
Linux commands such as top, ps, and kill show and control virtual machines, just
as they would for other processes. The integration with Linux is seamless.

Administrators should be cautioned that KVM is a relatively young technology,
and it should be heavily tested before being promoted to production use. The
KVM site itself documents numerous incompatibilities when running guests of
differing operating system flavors. Reports of live migrations breaking between
different versions of KVM are common. Consider yourself forewarned.

KVM installation and usage

Although the technologies behind Xen and KVM are fundamentally different, the
tools that install and manage guests operating systems are similar. As under Xen,
you can use virt-install to create new KVM guests. Use the virsh command to
manage them.® These utilities depend on Red Hat’s libvirt library.

Before the installation is started, the host must be configured to support network-
ing in the guests.® In most configurations, one physical interface is used to bridge
network connectivity to each of the guests. Under Red Hat, the network device
configuration files are in /etc/sysconfig/network-scripts. Two device files are re-
quired: one each for the bridge and the physical device.

In the examples below, peth0 is the physical device and eth0 is the bridge:
/etc/sysconfig/network-scripts/peth0

DEVICE=pethO

ONBOOT=yes

BRIDGE=ethO
HWADDR=XX:XX:XX:XX:XX:XX

/etc/sysconfig/network-scripts/eth0

DEVICE=ethO
BOOTPROTO=dhcp
ONBOOT=yes
TYPE=Bridge

Here, the ethO device receives an IP address through DHCP.

The flags passed to virt-install vary slightly from those used for a Xen installa-
tion. To begin with, the --hvm flag indicates that the guest should be hardware
virtualized, as opposed to paravirtualized. In addition, the --connect argument
guarantees that the correct default hypervisor is chosen, since virt-install sup-

5. You can use virsh to manage Xen domUs as well, if you wish.
6. This is equally true with Xen, but xend does the heavy lifting, creating interfaces in the background.

	38282718-UNIX-and-Linux-System-Administration-Handbook-4th-Edition.pdf
	TABLE OF CONTENTS
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	SECTION ONE: BASIC ADMINISTRATION
	CHAPTER 1 WHERE TO START
	Essential duties of the system administrator
	Suggested background
	Friction between UNIX and Linux
	Linux distributions
	Example systems used in this book
	System-specific administration tools
	Notation and typographical conventions
	Units
	Man pages and other on-line documentation
	Other authoritative documentation
	Other sources of information
	Ways to find and install software
	System administration under duress
	Recommended reading
	Exercises

	CHAPTER 2 SCRIPTING AND THE SHELL
	Shell basics
	bash scripting
	Regular expressions
	Perl programming
	Python scripting
	Scripting best practices
	Recommended reading
	Exercises

	CHAPTER 3 BOOTING AND SHUTTING DOWN
	Bootstrapping
	Booting PCs
	GRUB: The GRand Unified Boot loader
	Booting to single-user mode
	Working with startup scripts
	Booting Solaris
	Rebooting and shutting down
	Exercises

	CHAPTER 4 ACCESS CONTROL AND ROOTLY POWERS
	Traditional UNIX access control
	Modern access control
	Real-world access control
	Pseudo-users other than root
	Exercises

	CHAPTER 5 CONTROLLING PROCESSES
	Components of a process
	The life cycle of a process
	Signals
	kill: send signals
	Process states
	nice and renice: influence scheduling priority
	ps: monitor processes
	Dynamic monitoring with top, prstat, and topas
	The /proc filesystem
	strace, truss, and tusc: trace signals and system calls
	Runaway processes
	Recommended reading
	Exercises

	CHAPTER 6 THE FILESYSTEM
	Pathnames
	Filesystem mounting and unmounting
	The organization of the file tree
	File types
	File attributes
	Access control lists
	Exercises

	CHAPTER 7 ADDING NEW USERS
	The /etc/passwd file
	The /etc/shadow and /etc/security/passwd files
	The /etc/group file
	Adding users: the basic steps
	Adding users with useradd
	Adding users in bulk with newusers (Linux)
	Removing users
	Disabling logins
	Managing users with system-specific tools
	Reducing risk with PAM
	Centralizing account management
	Recommended reading
	Exercises

	CHAPTER 8 STORAGE
	I just want to add a disk!
	Storage hardware
	Storage hardware interfaces
	Peeling the onion: the software side of storage
	Attachment and low-level management of drives
	Disk partitioning
	RAID: redundant arrays of inexpensive disks
	Logical volume management
	Filesystems
	ZFS: all your storage problems solved
	Storage area networking
	Exercises

	CHAPTER 9 PERIODIC PROCESSES
	cron: schedule commands
	The format of crontab files
	Crontab management
	Linux and Vixie-cron extensions
	Some common uses for cron
	Exercises

	CHAPTER 10 BACKUPS
	Motherhood and apple pie
	Backup devices and media
	Saving space and time with incremental backups
	Setting up a backup regime with dump
	Dumping and restoring for upgrades
	Using other archiving programs
	Using multiple files on a single tape
	Bacula
	Commercial backup products
	Recommended reading
	Exercises

	CHAPTER 11 SYSLOG AND LOG FILES
	Finding log files
	Syslog: the system event logger
	AIX logging and error handling
	logrotate: manage log files
	Condensing log files to useful information
	Logging policies
	Exercises

	CHAPTER 12 SOFTWARE INSTALLATION AND MANAGEMENT
	Installing Linux and OpenSolaris
	Installing Solaris
	Installing HP-UX
	Installing AIX with the Network Installation Manager
	Managing packages
	Managing Linux packages
	Using high-level Linux package management systems
	Managing packages for UNIX
	Revision control
	Software localization and configuration
	Using configuration management tools
	Sharing software over NFS
	Recommended reading
	Exercises

	CHAPTER 13 DRIVERS AND THE KERNEL
	Kernel adaptation
	Drivers and device files
	Linux kernel configuration
	Solaris kernel configuration
	HP-UX kernel configuration
	Management of the AIX kernel
	Loadable kernel modules
	Linux udev for fun and profit
	Recommended reading
	Exercises

	SECTION TWO: NETWORKING
	CHAPTER 14 TCP/IP NETWORKING
	TCP/IP and its relationship to the Internet
	Networking road map
	Packet addressing
	IP addresses: the gory details
	Routing
	ARP: the Address Resolution Protocol
	DHCP: the Dynamic Host Configuration Protocol
	Security issues
	PPP: the Point-to-Point Protocol
	Basic network configuration
	System-specific network configuration
	Linux networking
	Solaris networking
	HP-UX networking
	AIX networking
	Recommended reading
	Exercises

	CHAPTER 15 ROUTING
	Packet forwarding: a closer look
	Routing daemons and routing protocols
	Protocols on parade
	Routing strategy selection criteria
	Routing daemons
	Cisco routers
	Recommended reading
	Exercises

	CHAPTER 16 NETWORK HARDWARE
	Ethernet: the Swiss Army knife of networking
	Wireless: ethernet for nomads
	DSL and cable modems: the last mile
	Network testing and debugging
	Building wiring
	Network design issues
	Management issues
	Recommended vendors
	Recommended reading
	Exercises

	CHAPTER 17 DNS: THE DOMAIN NAME SYSTEM
	Who needs DNS?
	How DNS works
	DNS for the impatient
	Name servers
	The DNS namespace
	Designing your DNS environment
	What’s new in DNS
	The DNS database
	The BIND software
	BIND configuration examples
	The NSD/Unbound software
	Updating zone files
	Security issues
	Microsoft and DNS
	Testing and debugging
	Vendor specifics
	Recommended reading
	Exercises

	CHAPTER 18 THE NETWORK FILE SYSTEM
	Introduction to network file services
	The NFS approach
	Server-side NFS
	Client-side NFS
	Identity mapping for NFS version 4
	nfsstat: dump NFS statistics
	Dedicated NFS file servers
	Automatic mounting
	Recommended reading
	Exercises

	CHAPTER 19 SHARING SYSTEM FILES
	What to share
	Copying files around
	LDAP: the Lightweight Directory Access Protocol
	NIS: the Network Information Service
	Prioritizing sources of administrative information
	Recommended reading
	Exercises

	CHAPTER 20 ELECTRONIC MAIL
	Mail systems
	The anatomy of a mail message
	The SMTP protocol
	Mail system design
	Mail aliases
	Content scanning: spam and malware
	Email configuration
	sendmail
	sendmail configuration
	sendmail configuration primitives
	Security and sendmail
	sendmail performance
	sendmail testing and debugging
	Exim
	Postfix
	DKIM Configuration
	Integrated email solutions
	Recommended reading
	Exercises

	CHAPTER 21 NETWORK MANAGEMENT AND DEBUGGING
	Network troubleshooting
	ping: check to see if a host is alive
	SmokePing: gather ping statistics over time
	traceroute: trace IP packets
	netstat: get network statistics
	Inspection of live interface activity
	Packet sniffers
	The ICSI Netalyzr
	Network management protocols
	SNMP: the Simple Network Management Protocol
	The NET-SNMP agent
	Network management applications
	NetFlow: connection-oriented monitoring
	Recommended reading
	Exercises

	CHAPTER 22 SECURITY
	Is UNIX secure?
	How security is compromised
	Security tips and philosophy
	Passwords and user accounts
	PAM: cooking spray or authentication wonder?
	Setuid programs
	Effective use of chroot
	Security power tools
	Mandatory Access Control (MAC)
	Cryptographic security tools
	Firewalls
	Linux firewall features
	IPFilter for UNIX systems
	Virtual private networks (VPNs)
	Certifications and standards
	Sources of security information
	What to do when your site has been attacked
	Recommended reading
	Exercises

	CHAPTER 23 WEB HOSTING
	Web hosting basics
	HTTP server installation
	Virtual interfaces
	The Secure Sockets Layer (SSL)
	Caching and proxy servers
	Scaling beyond your limits
	Exercises

	SECTION THREE: BUNCH O' STUFF
	CHAPTER 24 VIRTUALIZATION
	Virtual vernacular
	Benefits of virtualization
	A practical approach
	Virtualization with Linux
	Solaris zones and containers
	AIX workload partitions
	Integrity Virtual Machines in HP-UX
	VMware: an operating system in its own right
	Amazon Web Services
	Recommended reading
	Exercises

	CHAPTER 25 THE X WINDOW SYSTEM
	The display manager
	Process for running an X application
	X server configuration
	X server troubleshooting and debugging
	A brief note on desktop environments
	Recommended reading
	Exercises

	CHAPTER 26 PRINTING
	Printing-system architecture
	CUPS printing
	Printing from desktop environments
	System V printing
	BSD and AIX printing
	What a long, strange trip it’s
	Common printing software
	Printer languages
	PPD files
	Paper sizes
	Printer practicalities
	Troubleshooting tips
	Recommended reading
	Exercises

	CHAPTER 27 DATA CENTER BASICS
	Data center reliability tiers
	Cooling
	Power
	Racks
	Tools
	Recommended reading
	Exercises

	CHAPTER 28 GREEN IT
	Green IT initiation
	The green IT eco-pyramid
	Green IT strategies: data center
	Green IT strategies: user workspace
	Green IT friends
	Exercises

	CHAPTER 29 PERFORMANCE ANALYSIS
	What you can do to improve performance
	Factors that affect performance
	How to analyze performance problems
	System performance checkup
	Help! My system just got really slow!
	Recommended reading
	Exercises

	CHAPTER 30 COOPERATING WITH WINDOWS
	Logging in to a UNIX system from Windows
	Accessing remote desktops
	Running Windows and Windows-like applications
	Using command-line tools with Windows
	Windows compliance with email and web standards
	Sharing files with Samba and CIFS
	Sharing printers with Samba
	Debugging Samba
	Active Directory authentication
	Recommended reading
	Exercises

	CHAPTER 31 SERIAL DEVICES AND TERMINALS
	The RS-232C standard
	Alternative connectors
	Hard and soft carrier
	Hardware flow control
	Serial device files
	setserial: set serial port parameters under Linux
	Pseudo-terminals
	Configuration of terminals
	Special characters and the terminal driver
	stty: set terminal options
	tset: set options automatically
	Terminal unwedging
	Debugging a serial line
	Connecting to serial device consoles
	Exercises

	CHAPTER 32 MANAGEMENT, POLICY, AND POLITICS
	The purpose of IT
	The structure of an IT organization
	The help desk
	The enterprise architects
	The operations group
	Management
	Policies and procedures
	Disaster recovery
	Compliance: regulations and standards
	Legal issues
	Organizations, conferences, and other resources
	Recommended Reading
	Exercises

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	A BRIEF HISTORY OF SYSTEM ADMINISTRATION
	IN DEFENSE OF AIX
	COLOPHON
	ABOUT THE CONTRIBUTORS
	ABOUT THE AUTHORS

