IT 6204
Section 5.0

Automating System Administration

) © 2012, University of Colombo School of Computing @
UCSC

f.(

5.1 Shell Basics

>

? © 2012, University of Colombo School of Computing @
Ucsc

Y VY

Shells

The shell is a UNIX program that interprets the commands you enter
from the keyboard

UNIX provides several shells, including the Bourne shell, the Korn
shell, and the C shell

Steve Bourne at AT&T Bell Laboratories developed the Bourne shell
as the first UNIX command processor

The Korn shell includes many extensions, such as a history feature
that lets you use a keyboard shortcut to retrieve commands you
previously entered

The C shell is designed for C programmers’ use

Linux uses the freeware Bash shell as its default command interpreter
(compatible with Bourne shell, created & distributed by the GNU
project)

You can choose the one that best suites your way of working

© 2012, University of Colombo School of Computing 3
UCSC

Choosing Your Shell

» You choose a shell when the system admin sets up your user
account

Bourne shell — sh
Korn shell - ksh
C shell — csh
Bash — bash

Enhanced C shell (a freeware shell derived from the C shell)
—tcsh

« Z shell (a freeware shell derived from the Korn shell) — zsh

» After you choose your shell, the system administrator stores
your choice in your account record, and it becomes your
assigned shell

» UNIX uses this shell any time you log on (try %echo $SHELL)

© 2012, University of Colombo School of Computing
UCSC

Choosing Your Shell

» After you choose your shell, the system administrator stores your
choice in your account record, and it becomes your assigned shell

» UNIX uses this shell any time you log on (try %echo $SHELL)

» However, you can switch from one shell to another by typing the
shell’s name (such as tcsh, bash, or zsh) on your command line

(try %chsh)

Example of /etc/passwd file:

saman:xxxxx:500:500:Saman Silva:/home/saman:/bin/tcsh
root:xxxxxxxx:0:0:root:/root:/bin/bash

I

.\
(g
)

? © 2012, University of Colombo School of Computing @ 5

>

>

Command-line Editing

Shells support certain keystrokes for performing command-line
editing

For example, Bash supports the left and right arrow keys, which
move the cursor on the command line

Not all shells support command-line editing in the same manner

Multiple Command Entry

>

>

You may type more than one command on the command line by
separating each command with a semicolon(;)

When you press Enter, UNIX executes the commands in the order
you entered them

You can use the clear command to clear your screen; it has no
options or arguments

You can access the command history with the up and down arrow
keys with most shells

© 2012, University of Colombo School of Computing
UCSC

User Interaction with the Shell
U

User logs in

v

shell shows the prompt

User types a command

v

shell executes the appropriate program

v

User interacts with the program

v

User logs off

N
© 2012, University of Colombo School of Computing

{

e

5.2 Bash Scripting

© 2012, University of Colombo School of Computing

D

Shell Scripts

» What are they for?

e To automate certain common activities an user
performs routinely.

They serve the same purpose as batch files in
DOS/Windows.

Example:

v'rename 1000 files from upper case to lowercase

@l

© 2012, University of Colgmbo School of Computing
UCSC

What are Shell Scripts

> Just text/ASCII files with:

« a set of standard UNIX/Linux commands (Is, mv, cp,
less, cat, etc.) along with

v flow of control

—some conditional logic and branching (1f-
then),

—loop structures (Foreach, for, while), and
v'1/O facilities (echo, print, set, ...).
» They allow use of variables.
» They are interpreted by a shell directly.
» Some of them (csh, tcsh) share some of C syntax.
» DOS/Win equivalent - batch files (.bat)

© 2012, University of Coj@mbo School of Computing
UCSC

Why not use C/C++ for that?

» C/C++ programming requires compilation and linkage,
maybe libraries, which may not be available (production
servers).

» For the typical tasks much faster in development,
debugging, and maintenance (because they are
Interpreted and do not require compilation).

© 2012, University of Cojgmbo School of Computing
UCSC

Shell Script Invocation

» Specify the shell directly:
e % tcsh myshellscript
e % tcsh -v myshellscript
(-v = verbose, useful for debugging)
» Make the shell an executable first and then run is a
command (set up an execution permission):
e % chmod u+x myshellscript

» Then either this:

* % myshellscript
(if the path variable has ‘.’ in it; security issue!)

> Or:

e % ./myshellscript
(should always work)

? © 2012, University of Caj@mbo School of Computing @
Ucsc

I

.\
(g
)

Shell Script Invocation (2)

» |f you get an error:
“myshellscrip: command not found”

e The probably “.” is not in your path or there’s no
execution bit set.

» When writing scripts, choose unique names, that
preferably do not match system commands.

 Bad name would be test for example, since there
are many shells with this internal command.

» To disambiguate, always precede the shell with “./” or
absolute path in case you have to name your thing
not very creatively.

© 2012, University of Coj@nbo School of Computing
UCSC

Start Writing a Shell Script

» The very first line, often called 'shebang' (#!) should
precede any other line, to assure that the right shell is
iInvoked.

#1/bin/tcsh #1/bin/bash

This 1s for tcsh # For Bourne-Again Shell
#1/bin/sh

This 1s for Bourne Shell

» Comments start with '#', with the exception of #!, $#, which
are a special character sequences.

» Everything on a line after # is ignored if # is not a part of a
guoted string or a special character sequence.

L
© 2012, University of Cojgmbo School of Computing
UCSC

Bourne Shell Script Constructs
Reference

» System/Internal Variables
» Control Flow (if, for, case)

) © 2012, University of Cojggnbo School of Computing @
UCSC

Internal Variables

$# | Will tell you # of command line arguments supplied

$0 | Ourselves (i.e. name of the shell script executed
with path)

$1 |First argument to the script

$2 | Second argument, and so on...

$7? | Exit status of the last command

$$ | Our PID

$! |PID of the last background process

$- | Current shell status

h © 2012, University of Colombo School of Computing
Ucsc

Internal Variables (2)

» Use shi1ft command to shift the arguments one
left:

— Assume Intput:

e _/shift.sh 1 2 foo bar
— $0 = <directory-of>/shift.sh
- %$1=1
- $2=2
— $3 =foo
— $4 = bar

e shift:
— $0 = <directory-of>/shift.sh
- $1=2
— $2 =foo
— $3 = bar

o
© 2012, University of Cojgmbo School of Computing
UCSC

Environment

» These (and very many others) are available to your shell:
« $PATH - set of directories to look for commands

$HOME - home directory

SMAIL

$PWD — personal working directory

$PS1 — primary prompt

$PS2 — input prompt

$IFS - what to treat as blanks

@lf“

© 2012, University of Coj@nbo School of Computing
UCSC

Control Flow: iIf

» General Syntax:

IT [<expression>]; then
<statements>

elif
<statements>

else
<statements>

Ti

» <expression> can either be a logical expression or a
command and usually a combo of both.

Ne
© 2012, UniVGlSity of Cq_@nbo School of Computing

If

» Some Logical “Operators™:

s -€(--- Equal
* -ne --- Not equal
o -|t --- Less Than
o gt --- Greater Than
° -0 --- OR
* -a --- AND
» File or directory?
o -f --- file
o -d --- directory

e
© 2012, University of Capgmbo School of Computing
UCSC

for

» Syntax:

for variable 1n <list of values/words>|;]
do

commandl

command?2

done

> List can also be a result of a command.

{

) © 2012, University of Caggmbo School of Computing @
Ucsc

for

for file 1In *_txt;

do
echo “File $file:”;
echo "'===START===*;
cat $file;
echo '"'===END===*‘;
done

) © 2012, University of Cag@gmbo School of Computing
UCSC

while

» Syntax
while <expression>
do
commandl
command?
done
)

© 2012, University of Cagd@nbo School of Computing @
UCSC

until

» Syntax

until <expression>
do
commandl
command?2

done

© 2012, University of Caggmbo School of Computing @

Exercise

» All the *.conf files in the current directory will be copied
with that file name.org

for file In *.conf;
do cp $file $file.org;

done

©-

{

) © 2012, University of Caggnbo School of Computing @
Ucsc

More Examples

#1/bin/bash

This 1s my script to make a backup of a # .conf file
d="date +%d%mhy ;

cp -pv $1 $1.%d.org;

echo ""Copying Finished";

vi $1

for 1 In *_txt;

do
echo "File name: $i1'"';
echo "'=====START======="*";
cat $i;
echo "'=====END======="";
done;

© 2012, University of Cagpgnbo School of Computing
UCSC

More Examples

#1/bin/bash
it ["${1##*_}" = "tar"]
then

echo This appears to be a tarball.
else
echo At first glance, this does not appear to
be a tarball.
Ti
it [7"$2" = "help”]
then
echo " ===============HELP ::::::::::::";
Ti

Ne
© 2012, UniVGlSity of Cmnbo School of Computing

f.(

5.3 Periodic Processes

>

) © 2012, University of Colombo School of Computing @ 28
Ucsc

29

Cron

» Cron gives the ability to run commands periodically on
the system.

» Cron jobs can be set up by the administrator or by
users.

> The Cron Table is stored in /etc/crontab
» Users can edit cron jobs with: crontab —e
> List with: crontab -l

o
© 2012, University of Colombo School of Computing
UCSC

30

Cron cont...

» Each entry has 6 fields:
— Minutes = 00-59
— Hours =» 0-23 (Mid-night is 0)
— Day of the month = 1-31
— Month of the year = 1-12
— Day of the week =» 0-6 (Sunday is 0)
— Job to be executed
» * all legal values

> “” multiple entries are separated by comma
» # implies comments

© 2012, University of Colombo School of Computing
UCSC

Y VY

Cron Example

Field Rules:

— single number ie. 1

— range ie. 1-4

— ranges wi/step ie. 1-100/5

— listie. 1,3,5,7

— wildcard ie. *

o 17 * * 1,2,3,4,5 /usr/backup

Run /usr/backup at 5pm Monday-Friday every week, in every month in
the year

Cron daemon starts by rc files. Once started never terminates. It checks
the crontab file every minute (for any changes)

Cron allow us to schedule programs for periodic execution. However,
cron is not a general facility for scheduling program execution off-hours

— use the at command

31 © 2012, University of Colombo School of Computing
Ucsc

>
>

>
>

More Cron Examples

0O 6 *2 * * mailq—-v | mail —s “Stuck Mails ...” nimal

Uses mailg every two days to test whether there is any mail stuck in the
mail queue and sends the mail to administrator (nimal@...)

O 2 1 *2 * mt—f/dev/rftOrewind; tar cf /dev/rft0O /etc

Runs at 2:00AM on the first day of the month in every other month to
backup the /etc to the tape (make sure the tape is in the drive!l)

The same can be written as:
O 2 1 jan,mar,may,jul,sep,nov * mt—f/dev/rft0 rewind; tar cf
/dev/rftO /etc

O0***cmd - Every night at 00:00 hours

54**6 cmd - 4:05am on Saturdays

01*5**cmd -Atl1l:00am on every 51" day — 1st, 61, 11", so on
0 1 115 * * cmd - At 1:00am on every day from 1stto 15%, inclusive

*** 12 4,5 cmd - Every December Thu & Fri

=2

32 ? © 2012, University of Colombo School of Computing @

f.(

End of Section 5.0

@

>

? © 2012, University of Colombo School of Computing @
Ucsc

