
© 2012, University of Colombo School of Computing 1

IT 6204
Section 5.0

Automating System Administration

© 2012, University of Colombo School of Computing 2

5.1 Shell Basics

© 2012, University of Colombo School of Computing

Shells
 The shell is a UNIX program that interprets the commands you enter

from the keyboard
 UNIX provides several shells, including the Bourne shell, the Korn

shell, and the C shell
 Steve Bourne at AT&T Bell Laboratories developed the Bourne shell

as the first UNIX command processor
 The Korn shell includes many extensions, such as a history feature

that lets you use a keyboard shortcut to retrieve commands you
previously entered

 The C shell is designed for C programmers’ use
 Linux uses the freeware Bash shell as its default command interpreter

(compatible with Bourne shell, created & distributed by the GNU
project)

 You can choose the one that best suites your way of working …..

3

© 2012, University of Colombo School of Computing

Choosing Your Shell
 You choose a shell when the system admin sets up your user

account
• Bourne shell – sh
• Korn shell – ksh
• C shell – csh
• Bash – bash
• Enhanced C shell (a freeware shell derived from the C shell)

– tcsh
• Z shell (a freeware shell derived from the Korn shell) – zsh

 After you choose your shell, the system administrator stores
your choice in your account record, and it becomes your
assigned shell

 UNIX uses this shell any time you log on (try %echo $SHELL)

4

© 2012, University of Colombo School of Computing

Choosing Your Shell

5

 After you choose your shell, the system administrator stores your
choice in your account record, and it becomes your assigned shell

 UNIX uses this shell any time you log on (try %echo $SHELL)
 However, you can switch from one shell to another by typing the

shell’s name (such as tcsh, bash, or zsh) on your command line
(try %chsh)
Example of /etc/passwd file:
saman:xxxxx:500:500:Saman Silva:/home/saman:/bin/tcsh
root:xxxxxxxx:0:0:root:/root:/bin/bash

© 2012, University of Colombo School of Computing

Command-line Editing
 Shells support certain keystrokes for performing command-line

editing
 For example, Bash supports the left and right arrow keys, which

move the cursor on the command line
 Not all shells support command-line editing in the same manner
Multiple Command Entry
 You may type more than one command on the command line by

separating each command with a semicolon(;)
 When you press Enter, UNIX executes the commands in the order

you entered them
 You can use the clear command to clear your screen; it has no

options or arguments
 You can access the command history with the up and down arrow

keys with most shells

6

© 2012, University of Colombo School of Computing

User Interaction with the Shell

7

shell shows the prompt

shell executes the appropriate program

User logs in

User types a command

User interacts with the program

User logs off

© 2012, University of Colombo School of Computing

5.2 Bash Scripting

8

© 2012, University of Colombo School of Computing

 What are they for?
• To automate certain common activities an user

performs routinely.
• They serve the same purpose as batch files in

DOS/Windows.
• Example:
rename 1000 files from upper case to lowercase

9

Shell Scripts

© 2012, University of Colombo School of Computing

 Just text/ASCII files with:
• a set of standard UNIX/Linux commands (ls, mv, cp,
less, cat, etc.) along with
flow of control

– some conditional logic and branching (if-
then),

– loop structures (foreach, for, while), and
I/O facilities (echo, print, set, ...).

They allow use of variables.
They are interpreted by a shell directly.
Some of them (csh, tcsh) share some of C syntax.
DOS/Win equivalent - batch files (.bat)

10

What are Shell Scripts

© 2012, University of Colombo School of Computing

 C/C++ programming requires compilation and linkage,
maybe libraries, which may not be available (production
servers).

 For the typical tasks much faster in development,
debugging, and maintenance (because they are
interpreted and do not require compilation).

11

Why not use C/C++ for that?

© 2012, University of Colombo School of Computing

 Specify the shell directly:
• % tcsh myshellscript
• % tcsh -v myshellscript

(-v = verbose, useful for debugging)
 Make the shell an executable first and then run is a

command (set up an execution permission):
• % chmod u+x myshellscript

 Then either this:
• % myshellscript

(if the path variable has ‘.’ in it; security issue!)
 Or:

• % ./myshellscript
(should always work)

12

Shell Script Invocation

© 2012, University of Colombo School of Computing

 If you get an error:
“myshellscrip: command not found”
• The probably “.” is not in your path or there’s no

execution bit set.
 When writing scripts, choose unique names, that

preferably do not match system commands.
• Bad name would be test for example, since there

are many shells with this internal command.
 To disambiguate, always precede the shell with “./” or

absolute path in case you have to name your thing
not very creatively.

13

Shell Script Invocation (2)

© 2012, University of Colombo School of Computing

 The very first line, often called 'shebang' (#!) should
precede any other line, to assure that the right shell is
invoked.

 Comments start with '#', with the exception of #!, $#, which
are a special character sequences.

 Everything on a line after # is ignored if # is not a part of a
quoted string or a special character sequence.

14

Start Writing a Shell Script

#!/bin/tcsh #!/bin/bash
This is for tcsh # For Bourne-Again Shell

#!/bin/sh
This is for Bourne Shell

© 2012, University of Colombo School of Computing

 System/Internal Variables
 Control Flow (if, for, case)

15

Bourne Shell Script Constructs
Reference

© 2012, University of Colombo School of Computing

Internal Variables
$# Will tell you # of command line arguments supplied

$0 Ourselves (i.e. name of the shell script executed
with path)

$1 First argument to the script
$2 Second argument, and so on…
$? Exit status of the last command
$$ Our PID
$! PID of the last background process
$- Current shell status

16

© 2012, University of Colombo School of Computing

Use shift command to shift the arguments one
left:
– Assume intput:

• ./shift.sh 1 2 foo bar
– $0 = <directory-of>/shift.sh
– $1 = 1
– $2 = 2
– $3 = foo
– $4 = bar

• shift:
– $0 = <directory-of>/shift.sh
– $1 = 2
– $2 = foo
– $3 = bar

17

Internal Variables (2)

© 2012, University of Colombo School of Computing

 These (and very many others) are available to your shell:
• $PATH - set of directories to look for commands
• $HOME - home directory
• $MAIL
• $PWD – personal working directory
• $PS1 – primary prompt
• $PS2 – input prompt
• $IFS - what to treat as blanks

18

Environment

© 2012, University of Colombo School of Computing

 General Syntax:

 <expression> can either be a logical expression or a
command and usually a combo of both.

19

Control Flow: if

if [<expression>]; then
<statements>

elif
<statements>

else
<statements>

fi

© 2012, University of Colombo School of Computing

Some Logical “Operators”:
• -eq --- Equal
• -ne --- Not equal
• -lt --- Less Than
• -gt --- Greater Than
• -o --- OR
• -a --- AND

File or directory?
• -f --- file
• -d --- directory

20

if

© 2012, University of Colombo School of Computing

 Syntax:

 List can also be a result of a command.

21

for

for variable in <list of values/words>[;]
do

command1
command2
…

done

© 2012, University of Colombo School of Computing

for file in *.txt;

do
echo “File $file:”;

echo "===START===“;

cat $file;

echo "===END===“;

done

22

for

© 2012, University of Colombo School of Computing

 Syntax

23

while

while <expression>
do

command1
command2
…

done

© 2012, University of Colombo School of Computing

 Syntax

24

until

until <expression>
do

command1
command2
…

done

© 2012, University of Colombo School of Computing

 All the *.conf files in the current directory will be copied
with that file name.org

25

Exercise

for file in *.conf;
do cp $file $file.org;

done

© 2012, University of Colombo School of Computing26

More Examples
#!/bin/bash
This is my script to make a backup of a # .conf file
d=`date +%d%m%y`;
cp -pv $1 $1.$d.org;
echo "Copying Finished";
vi $1

for i in *.txt;
do

echo "File name: $i";
echo "=====START=======";
cat $i;
echo "=====END=======";

done;

© 2012, University of Colombo School of Computing27

More Examples
#!/bin/bash
if ["${1##*.}" = "tar"]
then

echo This appears to be a tarball.
else

echo At first glance, this does not appear to
be a tarball.
fi
if ["$2" = "help"]
then
echo " ===============HELP ============";
fi

© 2012, University of Colombo School of Computing

5.3 Periodic Processes

28

© 2012, University of Colombo School of Computing29

Cron

 Cron gives the ability to run commands periodically on
the system.

 Cron jobs can be set up by the administrator or by
users.

 The Cron Table is stored in /etc/crontab
 Users can edit cron jobs with: crontab –e
 List with: crontab –l

© 2012, University of Colombo School of Computing30

Cron cont…
 Each entry has 6 fields:

– Minutes  00-59
– Hours  0-23 (Mid-night is 0)
– Day of the month  1-31
– Month of the year  1-12
– Day of the week  0-6 (Sunday is 0)
– Job to be executed

 * all legal values
 “,” multiple entries are separated by comma
 # implies comments

© 2012, University of Colombo School of Computing31

Cron Example
 Field Rules:

– single number ie. 1
– range ie. 1-4
– ranges w/step ie. 1-100/5
– list ie. 1,3,5,7
– wildcard ie. *

 0 17 * * 1,2,3,4,5 /usr/backup
 Run /usr/backup at 5pm Monday-Friday every week, in every month in

the year
 Cron daemon starts by rc files. Once started never terminates. It checks

the crontab file every minute (for any changes)
 Cron allow us to schedule programs for periodic execution. However,

cron is not a general facility for scheduling program execution off-hours
– use the at command

© 2012, University of Colombo School of Computing32

More Cron Examples
 0 6 */2 * * mailq –v | mail –s “Stuck Mails …” nimal
 Uses mailq every two days to test whether there is any mail stuck in the

mail queue and sends the mail to administrator (nimal@...)
 0 2 1 */2 * mt –f /dev/rft0 rewind; tar cf /dev/rft0 /etc
 Runs at 2:00AM on the first day of the month in every other month to

backup the /etc to the tape (make sure the tape is in the drive!!)
 The same can be written as:

0 2 1 jan,mar,may,jul,sep,nov * mt –f /dev/rft0 rewind; tar cf
/dev/rft0 /etc
0 0 * * * cmd

5 4 * * 6 cmd

0 1 */5 * * cmd

0 1 1-15 * * cmd

* * * 12 4,5 cmd

- Every night at 00:00 hours

- 4:05am on Saturdays

- At 1:00am on every 5th day – 1st, 6th, 11th, so on

- At 1:00am on every day from 1st to 15th, inclusive

- Every December Thu & Fri

© 2012, University of Colombo School of Computing 33

End of Section 5.0

